Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes.

نویسندگان

  • X H Liu
  • S L He
  • Z P Zheng
  • Z B Tan
  • Z Li
  • C He
چکیده

Kernel number per ear (KNE) is one of the most important yield-related agronomic traits in maize (Zea mays). To clarify its genetic basis, we made a quantitative trait locus (QTL) analysis of KNE in a recombinant inbred line population derived from lines Mo17 and Huangzao4, under two nitrogen (N) regimes. Seven QTLs, on chromosomes 4, 6 and 9, were mapped under the high N regime, which explained phenotypic variation ranging from 5.03 to 15.49%. Under the low N regime, three QTLs were located on chromosomes 6 and 9, which accounted for phenotypic variation ranging from 8.54 to 12.21%. These QTLs had different mapping intervals to their nearest markers, ranging from 0 to 16.5 cM. According to the chromosome positions and genetic effects of these QTLs, only seven QTLs for KNE were identified in our experiment, out of which three were found under both N regimes, on chromosomes 6 (one) and 9 (two); the other four were mapped only under the high N regime, on chromosomes 4 (three) and 6 (one). This information could be useful for developing marker-assisted selection in maize-breeding projects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic loci mapping for ear axis weight using recombinant inbred line (RIL) population under different nitrogen regimes in maize

Ear axis weight (EAW) is one of the important agronomic traits in maize (Zea mays L.), related to yield. To understand its genetic basis, a recombinant inbred line (RIL) population, derived from the cross Mo17 × Huangzao4, was used for quantitative trait locus mapping (QTL) for EAW under high and low nitrogen (N) regimes. The results showed that a total of three QTLs were mapped on chromosomes ...

متن کامل

QTL identification of ear leaf morphometric traits under different nitrogen regimes in maize.

The ear leaf is one of the most important leaves in maize (Zea mays); it affects plant morphology and yield. To better understand its genetic basis, we examined ear leaf length, ear leaf width, and ear leaf area for quantitative trait locus (QTL) mapping in a recombinant inbred line population under two nitrogen regimes. Nine QTLs, on chromosomes 1 (one), 2 (one), 3 (one), 4 (three), 7 (one), a...

متن کامل

Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize.

Maize (Zea mays L.) is one of the most important cereal crops worldwide, and increasing the grain yield and biomass has been among the most important goals of maize production. The plant architecture can determine the grain yield and biomass to some extent; however, the genetic basis of the link between the plant architecture and grain yield/biomass is unclear. In this study, an immortal F9 rec...

متن کامل

QTLs for days to silking in a recombinant inbred line maize population subjected to high and low nitrogen regimes.

Days to silking (DTS) is one of the most important traits in maize (Zea mays). To investigate its genetic basis, a recombinant inbred line population was subjected to high and low nitrogen (N) regimes to detect quantitative trait loci (QTLs) associated with DTS. Three QTLs were identified under the high N regime; these explained 25.4% of the phenotypic variance. Due to additive effects, t...

متن کامل

Descriptive statistics and correlation analysis of agronomic traits in a maize recombinant inbred line population.

Maize (Zea mays L.) is one of the most important crops in the world. In this study, 13 agronomic traits of a recombinant inbred line population that was derived from the cross between Mo17 and Huangzao4 were investigated in maize: ear diameter, ear length, ear axis diameter, ear weight, plant height, ear height, days to pollen shed (DPS), days to silking (DS), the interval between DPS and DS, 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2011